Kata UpperCounter con Software Craftsmanship Madrid

El pasado martes 5 de agosto tuve la oportunidad de acudir a mi primer meetup de Software Craftsmanship Madrid, en el que se celebaba un coding dojo facilitado por Carlos Ble @carlosble. El objetivo de la sesión era hacer uso de un patrón diseñado por Robert «Uncle Bob» Martin llamado «Transformation Priority Premise» que nos lleva a una programación más genérica y funcional.

Tras sentarnos por parejas y escoger el entorno y el lenguaje de programación (En mi caso, C# con Visual Studio 2013 y XUnit como motor de pruebas) se desveló el objetivo de la kata:

Dada una cadena, devolver, en forma de array, las posiciones de dicha cadena cuyos caracteres sean la letra mayúscula

Ejemplos:
– A: {0}
– bA: {1}
– aBcdE: {1, 4}

Primera iteración, sin restricciones

Para esta primera iteración no teníamos ninguna limitación más allá de intentar resolver la kata. El resultado es el que se muestra en el vídeo:

El código completo, tanto del test como de la implementación se puede ver a continuación:


using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Sample
{
public class UppercaseSearcher
{
internal int[] Search(string source)
{
var result = new List<int>();
if (source.Length > 0)
{
for (int i = 0; i < source.Length; i++)
{
var current = source[i];
if (char.IsUpper(source, i))
{
result.Add(i);
}
}
}
return result.ToArray();
}
private bool IsUpperCase(char current)
{
return current.ToString().ToUpper()
== current.ToString();
}
}
}

view raw

Source.cs

hosted with ❤ by GitHub


using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Xunit;
using Xunit.Extensions;
namespace Sample
{
public class Test
{
[Fact]
public void ShouldReturnEmptyArrayIfEmptyString()
{
//Arrange
var source = "";
var searcher = new UppercaseSearcher();
//Act
var result = searcher.Search(source);
//Assert
Assert.Empty(result);
}
[Fact]
public void ShouldReturnValidUppercaseLocation()
{
//Arrange
var source = "A";
var searcher = new UppercaseSearcher();
//Act
var result = searcher.Search(source);
//Assert
Assert.Equal(1, result.Length);
Assert.Equal(0, result[0]);
}
[Fact]
public void ShouldReturnValidUppercaseInSecondPlace()
{
//Arrange
var source = "bA";
var searcher = new UppercaseSearcher();
var expected = new int[] { 1 };
//Act
var result = searcher.Search(source);
//Assert
Assert.Equal(expected, result);
}
[Theory]
[InlineData("A", new int[] { 0 })]
[InlineData("bA", new int[] { 1 })]
[InlineData("bbAab", new int[] { 2 })]
[InlineData("babC", new int[] { 3 })]
//Multiple uppercases
[InlineData("bCbC", new int[] {1,3})]
//No uppercase
[InlineData("qwerty", new int[] { })]
public void ShouldBeValidInDifferentSituations(string source, int[] expected)
{
//Arrange
var searcher = new UppercaseSearcher();
//Act
var result = searcher.Search(source);
//Assert
Assert.Equal(expected, result);
}
}
}

view raw

Test.cs

hosted with ❤ by GitHub

El enfoque es iterativo, utilizando un bucle para recorrer los caracteres de la cadena y la comprobación es bastante artesanal (a mejorar en la segunda iteración) y además, como teníamos tiempo, pudimos probar las Theories de XUnit, que nos permiten utilizar, en el mismo test, diferentes conjuntos de entrada y esperar diferentes resultados.

Segunda iteración, con restricciones

En esta segunda iteración teníamos una limitación importante: No podíamos asignar variables, ni modificar valores existentes. Esto nos deja sin la posibilidad de usar bucles (ya que vamos actualizando la posición del iterador) y forzando nuestro código a que sea más funcional. El resultado es el que se muestra:

El código completo es el siguiente, con el que intentamos seguir a rajatabla la indicación de no asignar o modificar los valores de las variables. En este caso el tiempo no permitió pasar de unos pocos test, pero se aprecia una diferencia notable por una parte en el test y por otra en el código de implementación:


using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Sample.WithLimits
{
class UppercaseSearcher
{
internal static int[] Search(string source)
{
return Search(source, 0);
}
internal static int[] Search(string source, int index)
{
if (IsOutOfBounds(source, index))
{
return new int[0];
}
if (char.IsUpper(source, index))
{
return new int[] { index }
.Concat(Search(source, index + 1))
.ToArray();
}
else
{
return Search(source, index + 1)
.ToArray();
}
}
private static bool IsOutOfBounds(string source, int index)
{
return source.Length == 0 || index >= source.Length;
}
}
}

view raw

Searcher.cs

hosted with ❤ by GitHub


using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Xunit;
namespace Sample.WithLimits
{
public class TestClass
{
[Fact]
public void ShouldReturnEmptyArray()
{
//Arrange, act, assert
Assert.Equal(new int[0], UppercaseSearcher.Search(""));
}
[Fact]
public void ShouldReturn0IfOneLetterIsUppercase()
{
//Arrange, act, assert
Assert.Equal(new int[] {0}, UppercaseSearcher.Search("A"));
}
[Fact]
public void ShouldReturn1IfSecondLetterIsUppercase()
{
//Arrange, act, assert
Assert.Equal(new int[] { 1 }, UppercaseSearcher.Search("bA"));
}
}
}

view raw

Test.cs

hosted with ❤ by GitHub

Como nota adicional, gracias a @DanielRoz0 que me ha estado ayudando con la edición del vídeo, se pudo simplificar la comparación de una letra con su correspondiente mayúscula mediante el uso de la función char.IsUpper(source, index).

Información y enlaces:

Mi primer Katayuno

Kata (Wikipedia): palabra japonesa que describe lo que en un inicio se consideró una serie, forma o secuencia de movimientos establecidos que se pueden practicar normalmente solo […].

Las artes marciales nos han enseñado que para ser buenos en algo, lo tenemos que repetir muchas, muchas veces. Este concepto se ha llevado a la programación, donde una kata es un pequeño ejercicio de código que plantea un problema que hemos de resolver de manera incremental, empleando TDD (desarrollo dirigido por tests), como si de la secuencia de movimientos de una kata se tratara.

El objetivo de estos ejercicios es mejorar nuestra capacidad de resolución de problemas y familiarizarnos con la manera de desarrollar a partir de pruebas. Estas katas se pueden hacer de manera individual, aunque si nos juntamos varios puede dar como resultado algo muy, muy interesante.

Esto es lo que ocurrió el pasado sábado en el grupo de AgileCyl, que organizaron lo que se conoce como Katayuno, reunir a un grupo de desarrolladores, programar por parejas una kata, y luego comentar la experiencia. En esta edición usamos Ruby, Python, Objective-C, Java, Javascript, C# y Groovy como lenguajes de programación, si no me dejo ninguno.

El funcionamiento fue el siguiente, hubo 3 iteraciones de 40 minutos con una pausa entre la segunda y la tercera para desayunar:

  • Primera iteración: Se desarrolla la kata por parejas, se introduce el concepto de TDD a aquellos que no estuvieran familiarizados.
  • Segunda iteración: Se cambian las parejas, se borra el código fuente (manteniendo el código de los test) y se re-escribe la kata. Es muy interesante porque el resultado puede llegar a ser bastante diferente a la primera iteración.
  • Tercera iteración: Se cambian las parejas (otra vez), se borra todo el código fuente y se re-escribe la kata en otro lenguaje de programación. Una vez más, es una tercera aproximación al mismo problema, aprovechando las características de cada lenguaje.

Al final de cada iteración tenìamos unos minutos en los que comentábamos qué nos había parecido la experiencia, sobre todo a aquellos que se enfrentaban, por primera vez, a un ejercicio de TDD.

La experiencia ha sido muy enriquecedora, he podido desarrollar con tres personas diferentes y tener tres puntos de vista del mismo problema, usando dos lenguajes de programación diferentes, he podido discutir sobre las ventajas o deventajas de usar según qué tipo de estructuras para problemas específicos. Espero poder repetir en el siguiente.